T T e+ 4 U wes et st

/S
PR

O\ oms: iéo'-u'id%m T sy 5199

|- THE ‘DYNAMICS OF LARGE-SCALE ATMOSPEFRIC PROCESSES
i ’
A By N. I. Bulevev and H. I. Martschuk
~US3R-

B oy e,

Approved for Public Release
bution Unlimited -

/_A_Distn

000006 181

Distributed by:

 DISTRIBUTION STATEMENT A

| | OFFICE OF TECHNICAL SERVICES
R U. S. DEPARTMENT OF COMMERCE
e WASHINGTON 25, D. C.

e T " REPRODUCED BY
L : ‘ ‘NATIONAL TECHNlCAL
: INFORMATION SERVICE

U. 8. DEPARTMENT OF COMMERCE
. SPRINGFIELD, VA. 22161

,—-———_u—-.-..--—_—--—-——---——-——-—_—--_—--——---—-.-—-._—_—.._---——_-—

U. S. JOINT PUBLICATIONS RESEARCH SERVICE
205 EAST 42nd STREET, SUITE 300
NEW YORK 17, N. Y.

Reproduced From
Best Available Copy




JPRS: 5199
0s0:  b599-N
THE DYNAMICS OF LARGE~SCALE ﬁTMOS?HERIC PROCESSES
(This analysis was made in 1951)
{‘I‘Ms 15 & translasion of an article by Nel. Buleyev and Helo Mart-

schuk, in Publicatoon No 2, Institute for Physics of the Atmosphere,
USSR Acedemy of Sciences; CS0: L599-N] :

Introduction

4 complete conceptilon of 1argems¢ale atmosvheric @racessﬁ
deﬁermining the nature of the weather in many raspects,‘cam
only be‘qbtained by the‘inclusion‘of'all basic factors in the
baroclynic atmosvhere. D ' ‘ | )

In tha dnaly is of large-scale atmounherlc nrocesqes we
‘flna 1t necessary to formulate mathematical theorxeu which M}-v
the nature aﬁd evaution of th real fields of meteoroiedlcal
eiwmcats as exdctly as possible., In prmaciple, the math matic
| cn&truculons based on the anpllcatloﬂ of the laws of hydro~
t}ermodyndmlc in atmospheric condltlona permmt the pertmnenu 
uyatem of nonlinear equatlons to determine the zbteoraloglcaj
¢lements of inﬁerést to us. Thereforeg in-forecasting meteo?« 

‘ JabicaX eleﬁenta the sclutlan cf the ccmmlete system of nopi'
'ncdr hydrothermodynamlc ecuatlons apuears to be Bhe undame

assignment for meteorolog 1cal nheory.




The attempt to obtain weather forecasts the theoretical way

by studying the systen of hydrecdynamic equat ions was made for

the fipst time by Richardson (6} in 1922, Richardson did not o

tain sufficient recults because he did not tockle the »roblen
the right methodical way. Richardson took the initial wind fiels
aé the starting fact and hoped to cbtain the evolution of at-
mogpheric currents with time on the basis of the solution of tiv
equation system. Inasmuch as the initiazl ficld of velocity gent
rally includes manifold perturbations of . all kinds of scalss,
Rich cor. should have taken into account the evolution of &ll
tynes of small (sound, gravitational) perturbations together
with the evelution of large-scale perturbations which are of
‘m&%@orological interrst, although the former are insignifi&anﬁ
in neteorological respects., The description of the small per-
turbations reguire the uvtiligation of correspmndingly small
scaies and smallltime integrais. The length and time scales us
_by.Richardson, wera much larger nhan the degree of exactitude

| r@quir@d; therefore, the sole forecast caleulated by Richardso:
did not stand the tesb.

The first fgasxblc colution of the egquation system for at-
mospheric processes was found by l.A. Kibel (2) in 1940. He
based his analysié on the assumption that large-scale atmos-
pheTlC processes present thenmselves aé quasi«geostrophic Prom=
 CESSeS. This permitted T.A. Kibel to take the initial fields

of pressure and temperature as starting factors and not the



initial wind £ield:; his problem'was the caleulation of changing
pressure and temperature flelds in time.

Hewasver, in I.A. Kibel'ls anu?y~i$ the possibilities of qur
geostrophic samples were not Q@mmla% 51y sxhausted. Therefore,

Y ~ XYy " - W 2w Aawf" o o ;} j’ O, o 4 N ety At

,th@ e%p&wktu“w ﬁ@?&?&%le of tinme & was only determined wi
& @al@mlaﬁian of the horizontal msss transfzr, and in the pres
sure change <=t  the convergencs f&cuer and the divergence of
the alr in the atmospherse were not considered.

In other meteorclogical analyses of the Friedmenn-Kotshin
_ School, the system of hydrothermedynamic sguatlons was used mo
efficiently; the vortex velosity equation was exemined as a pr

.

mebing equation connscting the complete alteration of the vor-

% e

tex with the divergzence of the alr on the horizontal plane. .

oy

Tn 1041 M.E. Shvetz (6) obtaived the expression for the ve

-

%AQM} velocity in the s

nape of the integral accerding to alti-
- tude from the individusl derivative of the vortex velocity.
In 1943 BN, Eliﬁ%va (1} mansged to ohitain the prognos shic

equations for pressure end temperaturs T on a certain "avera @aﬁ

atmospheris level thr&ugh lineerization,taking into asc Guut th

sphericity of the s‘zfaah of the @akth Ewﬁa Blinova starit ed

. . . ;ﬁﬂl“?{g"&
with the cmn&iﬁiaﬁ'ﬁf ma in@enaa@ of vdruﬁcﬁ%y of prkimdiaariee

:»umpt&an that tempera-
turs changes in the atmosphere deps nd only upon tha horizontal
transfer of hon n&en@@“s masses of different ﬁwwﬁera?hvas& B N

.b

Blinova integrated the svgtaonf lla#ﬁf &QthLQHS th ined in

this mannﬁr, undmr ganeral aeneiti&ng of the elewemﬁarf‘fieldf

L% '

9




TOrCi”ﬂ rmeteorologists see the possibility of utilizing hy~

erodynanic eoquations for weather foreeasts in a different way.

. 9
I‘\!& I:d,ﬁ,“‘ﬁ,ﬂk;ﬂa (8[ ‘“n&j—yse( the equatl(}n 3.
L L
i o
| §
:
ehteined ‘bi}” him start ~'~I"m +h the nature of the area of deven- N
dence of equazion i}f upon the field of function (p,ap); th
L y

result waz a nete oroha zic2lly incorrect conclusion according

.

wo which it is imsnecssible to valchlaté the future pressure ma”

v advance. The deficlency was ¢learly reflected in the rnuvi

of L.M, Cohuchovid (3) analysis published in 1949 in which th

author obtzined & more complete eguation in the examination ol
the barotrove sample of the atmosvhere:
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L We will keep to the symbols used in the first part of this
wio oy " o e

arieiyvais,
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E0

the cocfficient dependent on the altitude,

2 2

¥ -y
P op easmmmm———" Koir) ~ Mecdonald function of zero order.
:
~1

o : Aff eywx/;a#
In 1950 N.I. Eul&j@v obbained aﬁ“%mﬁ P LA S

&&@&ﬁm&w Par the change of pressurée in the barcclynic atmOSJ

e condi Feivi of 4 g’fﬁ'/{?&{(ﬁ Wt o«iﬁl?lﬁr

phere underﬁlinaar tembb?atﬂrej The 9quatlon for the prcsuurg

changs on the mean levei of th@ Lrop }hare was obtained as

%

follows:

L o
g P gPR ' _ o
.,.é.m - 1{1,:3,&;.“ - k?(p,&p) - ;4;3('*2:‘,,43.'3;}5
t‘ ....'tll ” )

T - averaga temperature of tropOJnherv, kg, ko, k3 - & Ccert

&

sconste 2o quantityv.

'

This analysis also brought us the formula for the calcumf

lation of vertical velocity at gifferent lwvels of the dtae

phere:

gpuw = - oy (2)A (T, p) = a,la) [(T, 4p) 4 (p, 67T

p - pressure at the mean level of atmosphere; al(z}; ﬁz(z) -

>

Cha rnog*& {7} analyd*s eyamfned the baratr@pic almvﬁe

the atmosphere and the gimpie barﬁelvnlc sample, The authcr *

uses the eaquation for the winds in zeostrophic ampwoxi ior

A

and the ecuation of the heat flux wi tnoxt conolderlng tnm v

-

J

tical current. Gharney obtained Pounsson s equation for Gk%

SR



derivative of pressure at different levals. The resulting
‘equaticn in the barctropic case was integrated according to
tha method of finite difference with the aid of electronic
&qwjipment; To integrate thé equation, Charngy was forced t
sup }ﬂmaxt artificial boundary conditions, pressvr@ values
San ¢f ‘

and Lmﬁl&Cﬁﬁﬁﬂp”C surc as time functions at the boundary of
the srea. |

The barceclynic atnosphere sample was examined in the an
lvsis published by I.A. Kibel (19:53). The author started wif
the eguation of the vortex in geastrbphiaa} approximation &

with the cowation of the heast influx without considering the

‘vertical current. I.4. Kibel integrat ed Pou&sson's equation

T

for the desired function wﬁg on surfzoes p ¢ const and ob-

‘tained the solution as follows:

Ir

Dz 1 1 ry EY)
-, ]
ot T 2m r ot
O

Flr, ¢, p) - the known function of the fields of znueorOIONi

[,

cal elements in the entire atmosphere, %§~ - the mean value

3

4%
of the desired value at level p up to the circumference of

radiug Py Value %E» with sufficiently large rl (1,000kn.
“appears small and may be eliminated. Excluding the average
‘value of function Flr,¢ , p) under the integral symbol and
integrating the function of influence ~§l 1.4, Kitel ob=

“tazined the prognostic formula

-y
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teristic feature of this system which distinguishes it from
conventional hydrodynamic equations, appears to be the exie-
stence of the deflective force of the rotation of the earth
in the eguations of motion.

The loczl stuly of space regions with horizontal dimen-
cions over saveral thousand kilometers permits us to consider

the surlace of the sartnh as a level surface subject to the
4 s

s

limitations of the raglon under study and the use of the rec

veangular coordinate esyatem in the initlal eguations. )
The anzlysis excludes regions in the immediate proximity
of the equator (¢ = 0-30°) because the nature of the motion
ﬁh@mg fundamental changes in these reglons, ‘
The inival system of hydrodynamic equations is assumed
o as follows:
Bquations of Motion
du 1 9% [ 1y Ju
A TR A -
[V

d p 1 2p 1
. . - /,u f. -ﬁ.. ..a%; }_4 .?..‘f. ’ (1,.

H
?
i
z
?
$
3
3
H
H

o P

BaTE "

Equation of Continuity

df % Ipy  Ofpw Ty

W e BB m e ow -eras e e e - o’ (’ v“'l

2t X T Iy 9z



s . £

Equation of Heat Influx

d7

R 1 4 € (-
| a R *‘:; hidasie d 8 i
Eguation of State

. © The following symbols wers used in the equations {1.1) ¢

'ﬁt@ coordinate axic

w, v,w - components of velocity vector
p - pressure, P density, T = air temperature, (= 2w
W= angular velqcmty of ea*“h rotation, O -~ supplement to
cal latitude, p = coefficient of turtulence, g - accelers’
o graviﬁy, R o= gas constant, £ - flux of heat per I
unit depe endent unon rmdlatlon and: tranwltlcﬂ of water in at
mosphers, Ifrom one phase state to the other, cp - gpecific
air under constant pressura, &Q%-adiabatic t@mp@rature gra-

& dient.

the complete dcte%ﬂxn“tmca of the pfabiem.
Ls boundary conditions with the earth surface we take t
transformation of the vertical velocity to zero

w20 with 220

\
\
N Boundary condnuhona and initiel data are 1ndiupen ible 3




and the conditions of the free surface at the upper limit of

the atmosphere

—— =2 0 With 7 =D 0. : (.
at

lementary data are pressure fields and temperatures at € =

s

23]

plx, v, 2} and Tix, y, al.

It is advisable to go over to the coordinate systenm xt,

b

y', p, t', where prassure p is essumed to be an independent

varisble; axes x' and y' are on the jisobaric surfaces. The ¢

Ctitude of the isobaric surfaces z is novw considered a funciy
of coordinates x', ¥y', p.and time L',

The transition from the elementary sysﬁem of the coordi:
X, ¥s %, T to Lhe new systen z', y', p, t' is realized thro

the following changes:

»&c}

R L R R A L.

B e e MR W S S Se MaGron G AmewwWn & oM Wouty Ok mesm

ax' - ox  ox dp Oyt 9y dy v

> 1 3 2 p Jr 2

PR R R K ] Ll L B L - ew s v eaOn

2p gp 22’ gt 2t gp

The result is that
PR Jz PR )z 2P Py

"‘:' = g AR obadad ———- - ot - - hiakisthind . (M’
dx x| dy ef oyt | ot Ef ot!

10
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J2 1 .
wron bR W R &R P . (1“!

v - gf

Tn the system of the x', y', p,t' coordinate the equati.
of continuity (1.4} ean be greatly simplified. To thils end we
use the equation of staties (1.3) end correlations (1.12) anc

(1.9). Considering that

ot

s34 s}

;} y 2 :},f;v / ;) o ;)"f \} 1 > :) ¥ ‘9 9 P

{
o b mem m O wn o] e ome [ Ba e ¥ me me )
x v f&-; J 2z I¥. 7z Y

e vy v ovaey L [ 53 Q0
- Iy e e afr g 3 + ] = com U oere men Y e e

P :‘ l. A wd, Ll - -or T .\ :
i k\dﬁ VA JiUp g% 9}; cy g K de J% Q7 95?
fan v L op op
o £, A o ) ‘n kW% R Lo D - o o oo
Nt I O A : wos v ?
Fdxt 4yt gz \ J% 7Y
we obtain the following form (1.4

‘;;u (}v \,&,
e d 32t 0, (1

Jx' 'yt 2p



)

- following manner if we take the new variables into account:

The equation of heat influx (1.5) is presented in the

&

JT 5T ST %oy ¢

o w e onom e 4 - e o s T - o lol )
&t}' Pou &x? v é)mi - gp e Cp ’ ( 7

wherae

SN
*3

I

S
§2
:

‘Finally, we express the limit conditions (1.7) and (1.8)

wmuh the new variables as fallaws:'

T e O with p =G (1.18:}
and
| e | ,§
"‘?V:ﬂ' 0 "’"“‘“ Wit}h p o p{} * (lclc};
JuE ,
It can be easily recognized that the coordinate systenm
selected by us, ncr s the use of the hydrodynamic equations

of the atmosphere in the same way as the aquaﬁionﬁifer the in

com sssible fluid. '
an after the prcblem of asaertalnmenu of mefeorologlca?

elements was fornulated, we'anproach the problem of change T

obtaln eouatmons suitable for vhysical cancluqionu,




For this purvose we differentiate equation (1.13) by y!

and equation (1.14) by x'; we subtraet the first equation

from the second. We assume that »u  changes little in re-

gard to the horizontal. Thus we cbtain

26t |ox! oyt oxY \Qx* ¢)yj PEA Kc)x’ Jy')

1 g o “ten or e Katoe e

, _ \

v Qv\ éw p > [Jv ,9u> v e
. g meme ) ' - o - «
\Qx* Qy*/ \Dx’ av! t e %o _\(?:c‘ 3‘3!'/ op ox!

P T o o 4

2w Jdr Ju v b} 2] ) Y
« / ) a 11 _a I . 82 " f)}l -
ax’ dy! Ip

Compared to other terms of the equation, components of

;'J.," I .
Lype %% <-w are generally small and can be disregarded.

ap Ot
We insert the following designations:

ov  Ju Ju IV o
axv d(yj ax' d y' p

Yith the inclusion of new designations equation (1,20} take

the following shape:
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To simplify the esralysis we check the dynamics of atmos«
wherie motions first without the inclusion of frictional for-

ces. The latter will re discussed at a later stage of the ana

For further simplification of equation (1.22) we assume

that axis %' shows east and avis y' north. Then the

5

following correlation iz cbtained:

Y ' 2 wsin G
ax oyt g

g ~ radiue of globe. In the following, parameter ﬁ? will

*

always be considered constant.
Tellng into acecount all of the above conditions, eguation
{1.22} now takes the following form:

. Y Yol o N ' .
g 4o 2l pv - igt (L.23)

PRI L u " ax 1‘: ‘J - b
-

- ¥
gt It ay?

We put down the initisl equations together with the limit con
ditions as follows:
do &z

- P w2l
by 85 + v, (1,24

A

i

dv dz .
N R A (125
dt? oy

5 PO

1%

16
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24 +u 9y y %‘"’ t pv = [2‘3 (1.2

e o a{« 134 t_mm-’* 3P asaram - -u%ﬁx‘mm(‘z( ﬁ + mg:» 2 (1.2
ot gx dy' - gp eg '
dz 1
Ip &
Fo I PRT 5 (lu
2= 0 with p =z O. (1. )
930' L I S o
T = Pfo === With p = p, . | (1.

Tﬂ the gtudy of dtmaspherle motion for which the charact:

r;z;ug dzdangzonq in regard to thﬁ harlzental are in the ord

of 1 OOO kilometers, and the characte "tic horlzontal veloci -

t*e»/lﬂ sec/m, the analy*zs of equatiens (1.24) and (1.25)

shows that these motions may be considered geostr&phic motior

U4 ux ,

Vo v

u

B

(1.

<
#

?

17




wWhere : .
Z Iz £ 2%

‘:‘ Ky m e e ’!' & e wewewa (J-cj‘}))

Loyt PR

« at component of geostrophic winds. u¥, v¥ are small supple~
nenting correctlions.

The analysie of the expression for the vortex

g :);V* guﬁ .
ALz wm D5 foee = o=y,
L ax' Ay
vhere ‘
‘}22 922
AT g wmrp § omenn
xe gyt

shows that value -%-' az, 1.e. the gecstrophic approximation’,for
the vortitty includes the main part of th worlicty,

We use the geostrophic approximstion for the horizontal come
ponent, of velocity w and v in equations (1,26} and (1.27}; ex-

chxdingf,\fmm (1.22) with (1,22) we chtain the following equa-

‘tiong:

Y 2 .

sz & % 5 i
LT T in “on 0o (z A z) + %G - - (lgBLp)
ot L ’ ﬁ&x' c g 9 '

3T g . Rl -¥) T

wen oz = (T, 2) 4 obepotleds o p (1.35)

at ¢ c g P .

p

18



ereem e, (1.36)
ap g p
‘ JB. JA OB
(A,B) 5 come moee = mme e .

2x' Jyt Ay Ix

Together with limit conditions (1.30) and (1.31) and elemen-
tafy daﬁa this will suffice to determine future pressure fields'
. temperature and vertical currents,
. Today the ascertainment of the general solutlon of thm ncn
| linear system for the dlfferential ecuations (1.34) to 1.36)
}meets d;f ficulties which cannot be overcome. We have only take:

~ o | ‘ | | T
up the problem to ascertain the first derivatives z 4

ot * Jt
‘and function = according to the given distribution of the pre:

sure fields and the temperature.

2, Bauation for Pressure Change

3

Ve reéord the equation system (1.34) to (1.36) in thé'fbl-

B lowing manner:
RS ) - g LD c. ; (2.1)
3t *,L z,A2) ¢ @ be 97 ] | (22
1

Index (') in the coordinates x, y, t is left out.

19
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&f

(2.2)

e
} DT Gmen MR RS NN T R AR G W e

;o - .
L W Qp E}R :g

3
H
!
*
L i
]
o
[
LR

. Py
£4 . -
g g ol A
ey €
‘(

5
L e
g N A

L] + 4
- 4
l‘ ‘;): L e b - ( L A

-, «F
B 2{
£l

s
P in
N
&

4 T P T . " o
(g === and P +the mean pressure on the surface of
carth which was assumed with 1,000 millibar.
-,
el i o5 '
B T{E «r}
ji¢) T e s o e 1 W P a2 e
g @
G

)f ¥z, ,/f‘*/n’/?’

Wi & 5 L
A5
m changes to a Vﬂry wna]l ex~
e 7, compared to ﬁhe re-

f

ade of vertical v¢lacit;.ﬁ“@

stain the derivative of temperats

23] " 3

b o o oy e . ” dv B e . ) . y & ’-
weee Lhirough the eouation of ztatice. Thus we obtain:
o

. f5 % - w iR

-« s i "
£ ow g jo7 g ‘ m” 4 @
ti 4!&-;_1 e 5;:‘ ez v m- o ] e eamos !( _E’ . B } e Ghamar e Meawm s o g Siwn e - { 2 o f.}
i

=

Tarr ;T T T
(;JJ 'j i ‘t/ & ‘ ‘ }"fi . a;‘

Gdon are multislied by g . Then we dif-

we obbain:

{Jf - 3 tio
W G am e e e {D e e o “ wlummf 0t {T’ 21)

Rl I \5y) T 97




W

'(/; 2 2 1D Yy 1 %) 9z
16'&

- } e . :
Excluding derivative %,ﬁ from equations (2.1) and (2.5)

- we obtain

> 2 ) ” } gz : . | :
¢ ga Tﬁ,, b mUp) e = £ {:;.:9 y,f), (2.6
¢ VAP TS

XJ g ¢
g ]
ok wn $ Z) “5" "*"“é“‘f - {Zé[
Gp i

In the cylindrical cocwdlnata systen {r, ? <) where

SN S

f) .
V< 4 y pol < P
i iR ' *
P om e ¢ apekdie angle and = =~ the reduced

m ‘ ‘ P

altitude, equation (2,6) is changed in the following manner:

i . ; s
P e e o xév- e owomas TV owan e + L R mu“ - f {YG . C’ )¢ (2\‘;' .
;g > JC r Ir r ré'&?Z Jt : ’¢’“

Te formuiate the problem completely, equation {2.8) shou!l
e supplemented by limit coraltions : '
As the first llmﬁt condition we a°buw the relation direc

- Ly resulting from the heat influx equation (2.2} on the surf:

s
iy

Level of 1,000 millibar,on the basis of condition (1.31) as

g £o | ch

3T, '
: '““""’g - """‘(To, Z‘o) o - f ( 3::.."‘ f) =Em e ) (2“‘
)t ¢ ¢p dt | |




g oz
- , we put (2.9)

£‘ (;g f: 1

Considering that T, =z « (

inte the following shave:

e Yy J | ,
i f«c:u ',,'0( - e o - A(r’¢3 l), (4\4
{ ' at} pe 1 '
whers -
R o £
< G
A(Z‘;f’: 1) = ;: l'z* (Tgs 2o} + “;;" s (2
o f e \
AW PR
d W e e /A‘:;C]’la (2o
g

’

The gecond limit condition is ohtained from the heat in-
flux equatien for the upper limit of the atmosphere in reg.

to the volume uwnit of the air:

"\ ) g
D £ e (x=x)
1im ic F nmmx4: 1im Cvf - (T, z) + 6’ 4 nyujﬁmm,u T/, (20
e hBE o B
S ILp (0 g .

g? - influx of heat at volune unit.

On the basisz of (1.30) we have

e ( - il
T AT
o | g

HMoreover, the quantity of heat ' flowing at the volum:

unit, is very small in the upper atmospheric layer. Therefo.
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lim G" - 'O.o

ana)ﬂy lim fu = lim pv g 0 and the derivatives of tem-

£20 RS
RS & O T fewoss ow
perature g§~ ‘and 25» are . . the 1sebaric surfaces
JEX ¥

in regard to the large~scale motions; as a result

220

lim [cpf T {T, zlj = 0.
in this way we obtain the relation

lim {( F 0*“') ‘ . : (201"?

rae \

Condition {2.14) can be put ﬁbﬁn in the following satis-

fdcvary manner if we take (2.3) into account : R
g wwm - g 0. A (2,15

In this manner the work done for the ascertainment of thg
firat derivatives according to time 1ed from the altltude of

isobaric surfaccs to the intevratlon af the inhomogeneouv; d:'

ferential equation of the second order (2.8) under limit con-

ditions (2.10) and {2.15).
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Now we procsed %o the problem (2.8), (2.10),(2.,15). Ve
assume that functions fylr,f, {) and Ar,, 1) can be pre-

gented in the following form:

oo 0 _
; Y (. L
t10r, §, ) = Re 2o &) Folp, (13nlep)pde,
‘ Tl =CG Q : v

G . 0

+ S e |

AMr, ¢, 1} = Re ;’&"(’3«, ing -é,
}’}:—nnz

where

Y
N
8

EY

=3
]
k]
3
4
Q\.""’"’\
o
ot
=
S
5'._3.»
<.
b

}._l
r—
"S

-

-
-

L 7en ¥
[
Ca

)
~

-
A
Ea
fon
s}

0 .

o
B

e, ¢, 100 }or’)r'dr*,

-
i
E
2
¥
E
!_\.«.—f“‘—\\

-~
L

?‘
a-
=
.1‘5*
Py
O wﬁ\g
' o

Here Ju0t) is Besselts fungtion of the n-order, and the
LY} /
f< cal ‘
gymhod He means that only the (esse entisl)parts of the corre-

-

& 'y g Vel
somnding expressions are exanined.

Y ieok for the solutlon of the problem in the followling
PG S
b w 03
N SR G
weom  Ar FoZe % n S I - d A I (2 :3
e Pe oL Slp, OWplrp)pap. (2
d& A e b ) '
Nz =00 o ’
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We subject (2. 18) and (2.16) under limit conditions (2. 10)‘

and (2.15) in equation (2.8). We comblnn the terms containing

eln? Jplr g} products with the same n, and adapt them to.
zero, We uvse corrslation

"’

. 2
ww”m“f‘}t’a\)‘n{f‘r}nmﬁwvj(;&?} "FJ(f}r)

r Jr

is & result we obtain the following equation and the limit

conditions for a new unknown function Sy(f, ():as follows:

- " .
a:? Lt U.)Sn ’ )
RS v p*Sn = Fulp . 1), | (2.19.
‘,b k:, v ) ’
™y
(g’ 53 -@ Sﬂé = - Galrls (2.20
1 j § 7%=
%, 3 / 3
98 | | - S
¢2 -2 6. (2.21)

The solution of sguation (2,19) is composed of the general

sowrbion of the hoxogsnaous squation

98, J8. | | S
C " mwnwpm ai« 2 ‘F’ m,ﬁn.x.;l o ZS < 0 . . ( 2 2n.
: 3y Pm = . BRI
J ( 5‘3 » | |
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and of the specific solution of inhomogenous equation (2.19).
The general solution of homogencus equation {2.22) has the

Fotf ewing form:

, Vi . V .
S lpy(h el (4 Cnf ?, (2,27
T DRIG -
1. /1 1 i.Ww~:h
Hyomomomn em fpE Yy a e & T f (2.7
VT 2R TN ’

Cny end Cﬁg - ceongtant quality depending upon p .
The particular solution Sﬁ'(f, C) of the inhomogenous
tior 12.19) will be found through the method of wvariation c¢!

constante,

S:"i {[) * C} o Dl’ll (}o ,() g’y.l. - Dnﬁ (f ’q) (}/2. (2";‘

bs it is known functions Dnl and Dnz are determined fror

“ullowing equation gystem:

oY Yy
I,‘:l} ‘:f -;,L D;)z < = O, \)
{ (2,
bl N
Pap O7 0 # VRl =3 v |
]
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DY, o mmemns
ni ag

s & result of the solution of system (2.20) we obiain:

Dly = weem= F 02 DY o e wmlen B (2.27)
il ‘1 ¥ n2 * I
ylm }r’z L 4 )/lw )/fz .

We integrate (2.27) at the limits from zerc to { . The &
Cbitrarily chosen integration constants are excluded and we ob

tains

‘ : ' ' o
Bos 'Y = “umiwm 1 F ¢ Ny V2 dn
walp, ) == Elpa )2 e,
: ) -

| . |
Bpl () 5 = commemn g Folp,n)n"l aq.

Vluy

fansequently, the particular solution of the inhemegenous

sguathion has the fellowing form:

; £ | IEEEE -
i _
f:::.rg: o .«w-:m;wrvuva.‘w,\ ’ f l 7/2 k, i’l] o, - ~y
[ ' :

In this manner we obtain the desired general solution of equ:

tion (2.19)

=7




gnl and G

'p;, ’)i) vy,

V.A#‘

Value C -

{{: Y V2 g a1

. .5t :j an . (2,7

2

are obtained from tha 1t conditions (2.20)

'i.
he result of condition {2.21) 3@ that

g

can be determined from condition {2.20)

%
. I . , -
F O (T - ¥ ( 5) fy nie . ¥ 3 Vl; dy +4AC . ¢
RSN Py i \ 1 f. sy 1 { . 21 1 nl
o)

e
cho P

Fola o V]
*m(f ﬁi}) [% 2 . s } é7 = Gn(f),

el XY 1.9
L
1 ¢ Y™ ¥

LA ‘ ’E - { s oa Yy ’} k '1 - ¥ d, e

:lf'}‘ » 33 7} ! Z (f“.! q ‘I

(2.3
1

: B AT SR T P nl /)
[ AR ‘i P rxk;; s rz } ( Gh( - Mm-r .

1 ’ - ok 7‘ V 1

A

U the basz

s

is of (2,30} and (2.31) in (2.29) we ohtain



1
1
I R T U S

_ 1 ,
Yo g ' 1 ﬁ G}.( )
fﬁ' )L:i' {}}“{ “ e { F (fb )1{ })l ;Zylﬁq - _&L__f_m (yl

N g{q,ﬂl A )Jl
(2.
RO sy
(} ;)l. with ;r{cgr?:s (0 with n< P
gy & N e .
Ef’(} with ‘rz;:'{, “ 713 with N> (
Now we taike {2,32) as a basis for' (2 28),, We obtain:
. oy & ;5“ 1 o -
\‘}; ” ¢m | 1 l - i }.{.
s - e ( IR (P i (’\a .
. - . Lt
PAS .«:’ij ) 2p ) nt/ )? g {yl ’f / ,
n«: 2o X o] Q . .
- “W«"S’iﬂswv »
‘ - F“l }l — 3 l /
T e
RS . d- = 4 pn ) i€
W : : 2 " F [ Y:?
y
G {r) ul o :
o mm:«myt%"m- e .L:::' f J }'_“f b f} d )O 5 ; (? P
T R Y ¥i o
:w‘ " ¥ ¥ 2 e -
# S PNE e
wialre }A msé"’z':‘ T P e ‘ ) '

We also take the values of P (f Y() and G; “(*"f) from (2.m

a8 & ba...ls for (2, 33) .and change the sequence of imagraﬁm
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The result is as follows:

0 @ 2T 1
) 2 l P ‘E:_ws in ( . ¢ e‘.in)?}[ ( \ ( \
P A YT (4] (-’ 4 ) f r’ 1 f ) I\L Y ¥
2;1:; 2% );”.; } Y 1 ! Y ! { 1
=00 o v} O

’(1".5 y 4y i )d7 + ,ﬁ(rﬂ’kf/ ¥ 1>M*(H)(r’; ’ 1‘")} r‘d\'}wdr', {r

where .
1 7 -
(n) EAR £ .
MiD r, €, vty ) 2 memmm L R4 0 -.~>P~( )3’]
SRR fo?{"f VAR X
o)
Jplr p )} (7 p) ‘ J (rp)d.(xrtp)
RIS pep 4 . i/ (£ ..E..Ji...”{‘...,..ﬁ- pap
#*{n) 1 v Jn(rf }J (r'P )
wind () SO’ rt) = _f: ( g"}l ......'..4...‘..;9 ...... gdp . {
§ o A - > +u

If we take the vertical line crossing the zero of the c¢

vrdinate system (r = 0)! as & testing point; we get n ok O
2.1 values if Ju{0) = O with n =k O and Jo(0) = 1 are take
Ivho aseount., '

M{n) =0 =nd wiin) | g

mernGC s o _—-

1 We cam always combine the vertical axis of the coordinate
the studled vertical,
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MéO) and M 0) giffer from TET O,

Only functions
In this manner, the sumtotal {2.34) iz transformed to a

‘composed solution, with r = 0.

'“‘h‘é we wrc Y .' ? X » am ¥ i ‘“

A {Fl(r g (E, £, It e

\‘

@t% r=0 J

o o
o | .
- f Art, AL, rirtar . e T (2430
o | |
R ‘ Y
¥ l /
Fl(r-,}? I %;m {h fl(l ,?9,}5)d%; 3
AT o
- {2,348
- ]
Mrt, 1) & =e b A(et, @, Lday,
23? 4 ‘!
A /
1 7 J ) |
2 [ rtp '
M(x, pr) = 7; S ¥k m«Q-me»m pds (2.39
X o - & 1 , :
o 2 3
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The result of {2.37) is that the pressure change at the
points which are situated on any vertical line, is determines
by the mean value of the exact functions of the pressure ar .

temnerature fields, in the circumferences on the isobakic

¢
A

surfaces, the center being on the examined vertical.
This raeult can be obtained through a simpler mathemati-
eal process. We integrete equation (2.8) with ¢ , .from zero

e s 4 g : i ;
to 2fr . Ve find the soluticn for the deriv atives {}% y Ob

téiﬁ@d with the circumferencs of radivs r ; thus we assume
that in the obtained soluticn 1 = O.

Irn the following this method will be applied for the ob
veinnent of the solution fer 1§§ andif’.

New we concentrate on the fact that according to (2.7)
ﬁhﬁ i hermal coefficients® ~§~(T, z) + égn enter the solut:

{737} in a very complicated manner as

whers
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o
T
~ 3 0
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Mrt ) = = e, ) § &
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ha



To simplify solution {(2.37) we try to find the function
of influence referring directly to A(r',?{ }. For this purposs

we use expression - .,._,;.};.. r{ﬁ,(r—‘,;g } instead of TFylr?,n} ir

(2.37). We integrate in stages and obtain:

ow [

‘% A LT E Dy - A I, )

}‘J

1 ,
: o 4 3 7 “ I} Ngm . Q'\f“"-
= Aty Wl et ) § Aete Dy LG e
o ' ' '

A{ r*,;? q «-%« Ml( L s r’,fz )d'l =

- Ay s, 1;531’{?’ r¥) =
A {

QMH o~

1 , ;
“.':S Agr’isq‘)mz(C ,’_r",l )dt} , ’ | (2.
o , R ‘
‘where
MQ(C’ rtyn) o mpm=- My oz 1\1(;"’?9’72} + \
o 1 ’qu | |

(S, ) FAM(Ty, )
| | - TR A
BT, 21,7 ) = S S 1%, (.;ry -8, (!f.}.)}x i} {S’rg)}’J {
. 7 ) i

ARG
J(r' jvdf /

2.
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Considering (2.41) and (2.42) we, finally, present the

golution in the following form:

3 i ?Q 2n =
Z 1 ( 4 g : b
3 ? : LY }
——— g mme e jem(z, & 2) § B~ {3y ( r, " Jrd ¢drdy 4
9t 27 ) )( [ pax;}lc’ ”T’ feran
o o ¢ '
1 1 o Zn’.R . ;
F—— v ST, 2) ¢ mem] M, r,n jrdd drdy .
2 ’g fﬁ J g |1 s j g Z!: » 1 ¢ E
o © o gz.ké

The influence function My({ , r,rz) and My(§, r,y) is
characterized by the dependence area of the solution of the
meteorelogical element fields in the surrcunding space.

To ealeulate functions of M*, M; and Mz it is-appropriai
te make certain changes in (2.39), (2.41) and (2.43). The
values ({q)}, LAV P and (égy‘are presented as instructive

7

functions of type e™*:

1 . , o 4
(fri )P = e“Pln?i ’ (,?,)}l - e ‘-plfa %ﬁ , (_715_);1 oo "PIn -EL

~

With the inequalities

<1, A1, £<a

the funections In ?%- s 1n €%~ and 1n {?« are glways po:

tive,

3k



As a result function My ({, r,: ) is con.erved to the

algebraic sumbotal of three mtegrals of type (4):

1 1

el , _ : 2
1 JArp) -y incs= ¢ r
‘t( 3 R r) - 5 c“‘gln .;I'_"" -gq«.ﬁ.n fd? - imuwnuni-mmuuu o-‘—--— ’
. . pd
° P ) 1n? - T

o s .

where p \!w + f , and T takes value C»Z ’%» -'% .

in

If wa use the aymbalg of (2«-!;5), funt.*r.t,mn M’B{(:, N )

is presented in the fcnowing manner:

(8, 1, ) . gg%z:; {Sla(ﬁ.,}) 40,0 (5,,, r) AILE r)]

; ¢
\2 (2.46)
To caleculate N*(x, r) we use the transformation
‘ ST , T'P e - o I‘f
g 114“ R - pip =X | S X-z By f)\}l“;*“ pop; dA.
° ﬁ«-:;w’ . R
Congidering (2.45) we obtain:
* | h J ()&l r) '
e, e (O ol lian .
. e A
| o .

x

(x,r) N1 - 3.
- g.-u--’--- * (-- - ) x.d S X‘- -2. & (A » r) d)n . (20!07) ’
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e introduce

’%"( X ¥ w) . N
msq-n«tt-:::mnm o U( "(’ s 1")’ [ (K,.;}

Vo ,

Ls & result ve can present function M((, r, ) through

the following expression:

T PO S S,
M "W ¥,/ } o m’w . U ,‘-:L " \-n.o.?; U s “) U j
2 {0, r, e igﬁ T i} 3 AL r) + (C};,r)
I \ 5%
- 5»; - 4‘ (§n )=+ S ly (x, rlax, (2,49
4 o

5

. | E )

"~ the level for whleh =2 js determined, r,)} = the vari.

'&‘E'E

Gl

»

ghle quaﬁtiﬁiaﬁ of integratvion
To caleulate fuonction N{,r, 7 } we use the tra nsformats

¢ e o Fo )
SN S S g dotrp .
x! Jolrp ) pap e Lo | B2 oL pap  (2.50
J - X o
A :

) . '
3

and then also correlations (2,45) and (2.48). Then N(f',r,q ;

becemes the sumtotal of three irtegrals of type

© . :
[ e o I | )
~ § er o2 delx, r
o P 3, =

J %
0
1 s

1 In es (2 4V li’l o b 2‘
v A '

e Wéu mwumum»mmmmmiwmmww«mummmn- d(m s r) . (2‘5
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7‘ mndu toward zero such as —«---i- . With r £0 U (r ; 0):«”«_ "

Taking note of (2.46), (2.48),and (2.51) function M, can

now be described in the following manner:

Ma(( , ¥, rv) g - 9(«5%3 T W», x)n i1 Q\EL, r> - I(waz, r§ +

(8 7(. 52 . (8 }7
& .-l:.{"f“ k; (‘?ﬂg I")% wﬁw’g é{' ) U(f,z,r) 43{@1 (fﬂ, X‘}t (2. 5A

. We nota pcsrticu.tarly that. mth £ =1, the 1nf1uanc@ func-

“gion My and M, has a gsual form as follows:

M:l. (l, v?;‘i}):mg:{’il,r)’ (2‘5;
R (1911‘;7?} = - I'(?;}., r) 4+ & U (r{ ; T)e {2.54)

Func‘mfzs U {x, r) I(x, r*) M* (%, r’) and the fields
of funetions My (C', r,s ) and N2 (C ) r,n ) for gifferent
cutting thz*ough the ver’oical mane, a*z*e graphic,dlly sh-own in
Fig. 1 - 12, | ' ' |

Ve will analyse ‘che reacticn of these funcm.on.: W1th dz.f» 3
ferent values of the independent varn.ables X, rl, rf r
7

with
1“ L

::x:u 1, and U‘(O, r) 0 mth Y= 0 with a smal) x: the functi
1

%

In <= , - in -



with growing r and a fixed value x function U(x, r) decrease
in a regulsr manner; with r - o 1t tends toward zero, as
Le- ‘§* . The function shows its characteristic trait at po.
r | . ‘
(‘Ix!ﬁ l;I‘:;:O)‘, N

With x= 1 and r =5 O function I (X, r} (Fig. 2) equals

zero; withxz ¢ 1 (0, r) = O; with a small X the function

tends toward zero, as Sereey With r=0 I (x, 0) =

d+ln~'£

memmmneamen o With growing r and & fixed value x function
‘211‘1 ‘ v -
p 4

I (x, r) decreases in a regular manner; with r -3 o« it

1 - & ‘ :
tends toward Zerc, as 5;-2--6 2 , The function is character
istic at point (X = 1, r = O).

The characteristics of function MY (X , r ) (Fig. 3) are
similar to function U (x, r). Values M*(x, r) are 1.5 to
two times higher than valués _U- (x, r). |

With x= 0 .M*(O, r) = O, with r -y oo MR, h'f:)"“appeam

1 - =& .

as =-e *© ‘(Fi"g’;v L)}. The tendency of the function toward
e

zZero is governed by the rule "“’ET .
) - ln \3:.

Functien M (1, ry ) Fig. 5) describes the integral act

3z ’

.of "the dynamic fact.ors" --(z N z) + B .3“ in regard to the

pressure change at the point on the earth's surface. The act

distance R =\/m2m 750 km corresponds to the relative length
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Attention must be given to the vast expansion’of the action
arca dfvthé dynamic factors in horizontal direction, For
bétter illustration and aﬁalyzla of vanishing of action on
: th@'part of the dynamic factors with increasing r values,
we will show'the‘influencé of riy (1, ryy ), in‘a graphical
manner, des uribmng the 1mporbance of average values Qf dyng-
g.mic factcru w? (z,22) ¢ 5«%4 rmlat ve to circumferences of
radius’ (rig. 6). Ve see uhaﬁ function rM; vanishes very
‘sléwly with inereasing r. With r =» o M (1, r,q‘)»d@craaa

r
-t . N‘t’k}v

as € 2,

In actual practice, the 1nfluancc of ayaa 1c‘factors on
the change af_surface pressure will always be limived my
radius R of the 2,000 km order, because the average values o

oy

'-i:-t- (z, Az) +P~§-§ relative to the circumi\‘erenceﬁ 2,000 -
13,000 kn are actually small.

The limited effect on the change of surf 1Ce pressure and
idynamlc factora in thg upper luyers 'can be seen in a clearrf
manner in Fig. 6. Wlth an equal dlstrlbutlon of the dynamlc

Jfactofs accordlng to altitude, their effect from the surfacer
‘, limited by radius r = ‘ 1 (300 millibar) is reduced twofold |
ﬁompared Lo the effect of these factora from the 900 mlllibcv

‘suriace whzch is limited by the same radius.
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X

Function M, (1, r,» ) (Fig. 7) gives an ideaz of the effe
.0of thermal factors -% (T, z) ¢ g% or, to be more precilse,
- of the effect of local heat flux in the atmosphers and the
‘change of surface pressure. The negative values of function
My (1, £y h } in the surrounding area of the atmosphere show
that at any level of the atmosphere in this area the local
heat flux causes a pressure drop at the earth:jgzégfemissipn

. PRESSeRE .
gl ERTTesdivre Ancreases.

1
U
o A '
O R
o \ ) (¥27
. L I3
[PA. 4 r"r\\ X o5 ‘
SIS S VO ISR § MR
aa\ e 3 ‘
h, . 1
OBy & b
A I
R ' ‘
4] ' z 3 ¥ r
Fig. 5. Field of Function Fig., 6. Field of Function
My (L, r,2 ) with ¢=1.0 ¥y (4, ryp)

Compared to the action area of dynamic factors, the regi

- -of activity of thermal factors appears to be more limited.

- Indeed, the maximum value of function M, (1, r,ﬁ‘) along the
vertical line with r = 1 is more than twenty times smaller

than the maximum value of M, (1, r,7 ) along the verical lir

L2



. T

with r = 0,2, during the same period in which, for instance,
the function of influence My (1, r,;t) decreases 4 times

The difference between the arsas o6f influence of thermic

| and dyhamic factors can be recognized by the féymptotic ree

action of functions My (1, r,p ) and ¥y (1, ryq ). |
Function I (4 R r) which appears as the main part t of functidn

Mp (1, r,q ), tends toward zero, with higher r values, as

€ ;'but-ml (1, ryg) Shows the same reaction as

We also want to show function r My (1, r,7 ) which represent

the summary influence of thermal factors on the eircumference

of radius vr,‘as well as the change of surface pressure, The

analysis of functlon r Nz (1 r,q ) shows that the 1nf1uence

of the ral factors in the upper ?ayers ef the at osnhere on

the change of surface nressure, is. usually very smalle Inaswuc{

as the average values of the thermal factors ~~ (T" Z)T** on
’D .
circumference r Wlth a suff1c1ently hlgh r, can be consmdered R

1mportant only in the case of greater thermobarometrlc dls—"

- turbances in the atmosphere. On the basis of the granh shown

in Fig. 8 it can be mazntained that the relatlvely 1mnortant

‘1nfluence of thermic factors of the upper layers on the changf

of surface pressure can exist only in the case of great therw.

barometric dlsturbances.
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Now we ﬁf’”lnu the nature of the functions of influence
‘Qf ﬁ} o r,)z) and M, ({ , T 1} with (<1, 1.e. the effec
ol the atove ;e od GYu&ij ané thermic foctors on the
éhﬂﬁgé of preasure 2zt & certain leva1 above the surface of th
WMT&ﬁf | . | -

?iﬁ, Qlazl 16 shov functionu M1 (0,7, Ty ) and hl(O 5,
~‘r,a;}@ IS prlhrlnle they do not differ from fuvction vhich
H?Mu 8 m,\av to thew, fl.e. from functmons for f 1, which
'@grﬁ a1 di&ﬁ abov The dxfference is only that the area of
‘ﬁrViwum valueb of the functlon differed here from levels

. 0.7 and £z 0, 5, that is to say from level¢ of examined

o

T, TV TP
(RIP B 5 & o
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Fig, 9. Field of Function . Fig,.10. Field of Function
(¢, 7 ) with ¢z 0.7 My (S, v,y ) with €= 0.5

N ﬁ completc ¥ dmffe“ent tyne io ;urctlon Pz (€, r, 1)
‘with <;V, ccmu“red to Nz (1 r, (). Pig. 11 and 12 show
’ruﬁctions Mo (O 7, r q ) and MZ (O. 5, r, q i Ve can see tha‘i
_tﬁe local flux of heat in the unper oart of the atrosphere
‘Jrelatlvc to 1eve1 g caascs a drop of terﬁe aturg? on the

othe r n%nd the heqt flux 1n the ;ower part relative to lev

& leads to a rise in temperature. 1Thé ;LWW§§(éMof heat at

- differe nt levels C’ of the atmosohere causes ‘the reverse‘~”
e effecu.. o R ) n
| At a ccrtaln level C the 1nfluences of thermlc fautor‘
JVOL‘bhe uppe; awd lower layers on the nressure change comper.
te each other so that the nressure change deoends only |

- upon the dynamic LaCtOTS‘ ThlS level Wlll be called "mean

level®™ of the atmosphere,

L&
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Theoretically, the existence of such a level was alread
mentioned in I.A. Kibel's (2) analysis. In the first place
the isobaric fiela at this level as it was shown by I.A.
TKibel determines the motion of barometric and thermal dig~-
turbances in the vicmnity of the earth. However, empiricall
the exmstence of the steering current was shown already at
an earlier date by S.I. Troibzky (5) |
| . In each concrete synoptic situation function My (f s Ty
permits us to determine the position of such a level. In ge
) ral this level does not remaln constant neitner ‘relative t
_ the vast spaces nor the time, because in each practical ca
Jits po»ition will be dependent upon the distribution of !

eat flux E = gp -& (T, z)+£.'
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If we admit that the local heat flux is constant relative
to the vertical line along the entire thickness of the atmo-
éphere,‘the mean level, in this case, would be somewhere be-
tween the surfaces of 700.and 500 millibar,

The position of the mean level remains dependent upon the

: lvalues of thermic and barometrlc d¢str1bution in the atmo=-

sphere. ?1th increaamng r values the negatlve valuas Gf fuﬂca
tion My (§, r, ) in area 7{45’ disappear at a slmmr rate
than the positive values in area qéif the conclusion is
thmt with the same relative dlstributzon of the hedt flux
 E {r, f‘ q) along the vertical line, the mean level will be
higher in the case of great disturbances than in the case of :

small dittu%bances.

With g’~e'o selutlon (2.44) for 1;% ‘is converted to the

~ following ex§r6331on.

Jz 1 e iy ul1,
'—f)--- = - g g e -%(Z,A z2) - ﬁu-jj ----1:- rd;ﬁdr :
o o | o

oL (B g o p7 0 UM, r o

PEN QLY TR L
2ur g il Tey]e=0 &

o ‘o | P | | ) o

where}W“'“ |

U‘(l r) U(l,r) - 21(1 r)

A




Cd.e.
fU (1, v} withr >0
l 9 wmth r = 0.

Ui, (2,87

The functions of inflﬂenbe‘Mi (¢, r,q ) and M,( ¢, Y }
characterize the region'df dependence of the studied value
%gﬁ' at the respective point upon the environmental setting
of the fields of meteorological elements; these functions ca
2iso be interpreted on theibasis of the principle of revers-~
ﬁhility‘in the following manner. |

At 5 certain point of space (X, v, ) we.place a single

Taearce of substanece™,.

. g % R Te |
H ;‘:7 z_,;él; ?ﬂv(qm "(%,Aﬁ?ﬁ ';/-: n} or A o -~ - (T’ 2) o[u u& .

e o #yi;, function Ml ({ r, {1 or My (rl,‘rgg )
tauaﬂﬁ the ehange of pressure in th~ surroundiug gpace throuy

tho fnfiuvence of this source. The nositive source of the dym

-

stance B at the level results in an increase of pref

s as s d g ey ¥m
MEILL BYHG

V‘mﬁre an the surrounding area aﬁ all levels, refiécﬁed.by spa
rumﬁﬁimn.ﬁl{q s ¥,§ ) It can be easily seen that function
#y f 7 s {1 is identical with Ml (4: » Ty ;1)

The s rgke “thermal source A" at level { results in de-

roanad pressure . in the upper part of the atmosphere accord-

ing o funetion My r,{) as far as level § is concer
£ 127::
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aS‘weil as & rise of pressure in the lower part of the at-
moaphére” Negative sources of the above mentioned dynamic
and thermic substancés cause, in an analogous manner, a re-
verse tendency.
| Suech an interpretation of the influénce function gives
us a clear idea of the radius of lnflue%ﬂe of thermic-barome ;
trie diﬁturbancas in the atmosphere on the change of pressur
chamges in neighboring regions.

in aznalogous interpretation w111 also be given by the S0

T

lutlons for %;% and ¢, which will be described in the fol«

 lowing paragraphs.

3. Eouations for Temperature Changes.

fhe cquationo for temperatur changes at diffe%eﬁt levels
'w111 be obtalned through the senaratlon from the equatlon
‘system (2.1) - (2.3) of the vertical velocity and deriva-
J z L :
| tive "':)““E .
To this end we differentiate (2.1) with f We obtain:

«2~ ('s~~ + -2- e {z,4 2) 4+ ;2e--, ~‘J%«Q~~~ .

< 2t 20 Ix]  Pg )(
The equatiqn'of statﬁa (2.3) results aS'foiIOWSa ‘: (3'1

AT /A R NIV N EP

st f)t."— g § 493

LG




) [e | az] R 1 (g g
-é'-(- [-[' (z, Az) ¢ ‘5':5')2—‘ = - "'g' -f. b— (T,‘Az) + ‘é‘(Z,AT) -

- o7 .

We incorporate (3.2) and (3.3) into (3.1) and obtain:

. . . . " 2 2
1 oT 1e g e AT X
o ompommm womm (T, A2) 4 -m(2,AT) 4 fare| z ===fs
KA at g [L ? | e ¥ ﬁaxw
| | (3.4
P’
To exclude 32 from (3.4) we dissolve the equation in
regard to ¢ and differentiate same twice with { assuming,
as previously, that parameter mz_changes according to alti-

tude. We obtaint

55 L A LA 32 5 g .

 mR Ry
= -...!'..u?-i?: - ‘ ) ' (BtS
PR ;t! - .

Now we multiply (3.4) with m? and subtract from (3.5).

The result is as follows:

NERTR) 2} T | 2
<‘é’<‘5 YR A T oy (s -
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1, (x,y,§)~~~-§ { , ’*"g"J -

c .

| . ,. .
- [—-- (T, Az) ~I- -+~ (z A‘I‘) +B*"} (3.7

| In regard to the nature of limit 4cquit,ions for equation

(3.6) we assume the following (see conditions (2.9) and (2.14

2
Selea o Y o
(3.8)
27 .
Letaindt = 0,
9t$§=0
A | ¢p |

The term ()% = ¥) -5-9 gontained in Q, (x, y) is disregar

ed in this analysis because this term is of a higher order l; |

In view of the i‘act that equation (3.6) has a structure

which is analogous to the structure of equation (2. 6) for 2z

5t

1 rhe exclusion of term ()a, -7) -3-—9 contained in ez, v),
'is not of basic nature. It could also be retained as QBEQ can :

‘be determined according to formula. (2.44) in the previous pa =

ragraph.
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the solution for é}% as weil as for é;% will be determined

by the mean value of exact functions on the peripheries with

. the center being at the examined point. Therefore, we apply

a simpler mathematical method for the 301utibn of equation
(3.6). The possibility of applying this method was already
,mentioned‘ébove. o '

~ We note equation (3.6) in the cylindrical coordinate sy-
sten (r,¢ ,{), r= -‘Y‘E;-'-;ﬁ—-- , # - polar angle, (= ?E -
mentioned altitude. We integrate this equation with ¢ from

zero to 2/ .

The result is as follows:

r dr Jr/ 2t
] rya - R
A 1§2Td £00,€ dm oo | £3 ¢ag
amm @ we- C - ‘ r Caemen r {
at . 2n"’ ) at ?’ 2 ’g o 2}7'- J 2 ’? ’ 4
. These are values :;- and f, ascertained on the circunmference

of radius r .

The limit conditions (3.8) arg‘refiected in the following

manner:
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e

13

(]
ﬂ‘
&
Of_
5

—— s

- ' {3.37
c.““""“‘ - Oo ‘ -
P 3 A SI:O . -
| , 2T E ' o
The solution for E;~ will be tried in the form of -the Fourie-
Bessel integral
W » ‘ ; ,
5T | | - ( 1«‘
o ,

Ve assume that function falr, £} and Q,{r) can be preSéﬂi;'

eﬁ in the form of the Fourie-Bessel integrali

® ®

fgi(r,(’) = f ‘.Jo(r;s- )fdf g £, (r"-;,{" Yol prt) ridr’,
° e | 7(3.0

R (x) = ( Jolre ) a,f’ ,ng(r'JJo(f’r,')r,'dr"

| o b

. We take (3.13) and (3.14) as a bgsis’for eQﬁati;ﬁ (B.iO)Vané'

1imit conditions (3.12) and use the known correlation

5



1 ddo( p
- e ~~ DR oan L Y L ¥ 1 - - s - 2J ,
r Jr { dr } £ (Pr)

In this manner we obtain the following equation and li}nit co
 ditions for S(»F,g):

> ,2 98 | .
-§u§-§ '.-"f -)DS " F (f ,f). | (301
S ‘= G '
=g 0ph (3.1
:S}-O - Oa"
Fo (f,f) g‘? f,(r*, () dolp r')ridrt, |
- e | o G

w s
Ga F),gf 'Q'o(r')Jo([s r') r'dr,
. 2 :

In view of the fact that equation (3.15 ), as far as ‘its
_st.;ructure'i:s concerned ," is analogous to equation (2.19) exa-
mined in the last paragraph, the general solution of equatio
(3.15) will have a form which is analogous to (2.29).

S(p, () = ot 4 0p0% e g ralg £ -0t

e,



Ve take arbltrarily constant quantlties 01 and 62 from tr |
‘limlt conditions and obtain. - o |

+ alp) g?—- . R | e

V“*F'

We take (3. 19) and (3 13) as a basis and replace F (f q"

gnd G (fﬂ according to formula (3 17). If we also change the‘ -

order of integration we obtain:

 ” f3arff?@”f    jgf¢j  %7"

+g ( ) - (ffl)’l] -9-£f;--9-€-f1} r'\dr_'d\_l(’- +

| o0 : / ,
o 1.
BETCE

(P 35t ) Seteiphp opf

g

- ‘55K.




. Now we assume that in (3 20) r= 0. As a result we obtain
2T

the solution for 5% at the points which are located at varis

levels ( ,.along the coordinate axis,

v L @ o e R
. ..2...1.; = - g §f2(r1,'1 )M_B(C.’ r',)z )r'dr'drz + ( Qplr!)
e e o

I, edrtert, (302

st T o -]

Aolrt )
| , , ~9~;~ji- fdf (3.2
and ' ) -
I(T, r) =[ YA o Arrp)pds (3.2;

These are functionswhich had already been used previously
We take fz(r',q ) from (3.11) and (3.7) as a basis for

{3, 21) and partially integrate thermic i‘actor -5-('1‘, z) 4 ---
Cp

s e can finally give 8 description of solution (3 21) for

1 Derivative %—g can be direotly obtained from solution (2,3
for 75: by differentiating w1t.h ¢ and utilizing correlatior
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2T

{ {-P (T _ -} -€-~j I (f, r)raq?dr +
0 : . S ’ R

; I o ar _ . ‘

L 2 &, £ y R o
Nt M ot s
O.OMO o cooFL : ‘

. 1l o ‘2:1’ - QT ,

] 2 Aoy .g.¢ ~‘~“‘ . H ]

o o o T ‘
‘rdf’drd)l , (3.2
2 M
My, ((J_riq) z 7 Eﬁié
{continued) Qé | Mg ¢ 9(/>ﬁ)\ﬂ
T P TN ¢ 1Y
‘Than ve obtain: | -
JT B L@ 27 ,.J; ® 27 |
: l s : .
o o ~ 00 o - |

. | 02(f r 7)rdfﬁrd

- : ; 5 F S S I BT
) gn” | g . Jz 9 . | e
f(r,}‘f’, 7 :~§~-1-[(z A z) -,&,g---} + 5;2- { {T(T’Z) } ;;
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" The functions of influence'M3 and M), are expressed by
functions of type U{X , r) and I(X, r) which were used in
the preceding paragraph.

Ms(g,r,q) = é? !}El U( %%-,>f)

ey <3 o)

. My ( )
- -2- 13 c,r,y( .

Fig., 13-17 show the functibn“of I({f,r) and the sections
yalve

in the vertical field, of functions Mh(¢5r’7) and M3(§,r,1).

The analysis of the values of function I({,r) (Fig. 13)
shows that the first term on the right (3.24) calculated ac-

cordiﬁg to altitude, steadily vanishes witb the vaning £ .

(continued)

Gﬂfﬂ’,)’(} = "f'}"é = "2-' {é(!: I(‘?‘" r)- ")i% I(‘%;a 0 I(f)z,r)

/
P .\‘(C o) | Wi,
+ "2" 3 srﬂl +°( Iq»r ’

M (e,r)
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Function M, (f,r q) (Fig. 14 and 15) is used for calculat~
"'1ng the irregular dlstrlbutlon of ‘the local heat flux along

- the verticéal. The firgt two integrals on the right (3.25)

give complete data on the influence of local heat flux distri-
‘buted‘ovérﬂthe eﬁtire”atmbsphere'aﬁd“bh’thé téﬁperétnfe change
at a fixed point. | | |

Analytically, function Mh(f’r,q) con81sts of two narts.

MI;(C: :7@) =X (C; ’7(),- -]:- M3 (L ’1) | -~ (3.26
g ;,3.{45 (.%,_95 5? I(_f, § s - o
w o - o
| £206

o

5
4
3.
2
N

@ &Z 0.-1- ok M l.@b‘

“"Fig. 13. Graph of Function I(g,r)
et for various %
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In the environment of radius r::O 5 X(! r,r() forms the

- main nart of values Ml;(:’ ,r() On the other hand, —2- MB(f,r.,

appears to be rela‘cively small. With higher values of r{r2i,

.- the corresponding equilibriwn of both components contained in

o ML, :z) is outbalanced; but each of these components is

small. o sl

' ‘» Function M3(.(' r,?l) {Fig. 16 and 17) gives an idea of the
sphere of influence of the dynamic factors my [ [-(T Az) ¢4

¥ g (z,AT) 4+ ﬁ ---—] on the change of temperature at the re.
epective point on 1eirelf . This function has its maximum
‘values 1n the immediate v1cinity of the examined point and
‘ vamsnes with the increasing T but also in the direction of
.‘the upper and lower boundaries of the atmosphere. yl = 0 and
.2{31M3((,r,,l)=o, if (o 0. |

It can be easily recognized thet with higher r values
funetion M3(f ,r,)z) is presented in ;an asymptotic manner as
follows: -%- = '2?' . Acoording 'co the increase of r values,
the arez of maximum values of i‘unction M3(f,r 7) with level
{ is formed at the upper part.

The result of the ana.lysis of the properties of function
My(Cyr ,)I) is that the temperature change at any level { ex-
pressed by the last term in (3 2l+) is determined by the dy-
namic factors of the at.mospheric layers bordering level {
to a greater extent. In regard to levelt ‘the dynamic factor:

leed 647
of the upper layers have a higher speis AR Ey than simi

lar factors in lower layers.

»
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' T
Now we assume in what manner the solution for é}ﬁ des=

cribes the change of temperature at the upper border of the

atmosphere.
o f R
ozl T T e
'A ..’\: “ ) \\\ B
04 . < G625
»——\'\ : 05 l’ .
0’6“"‘“ '''' *-’;5'/'0-*- i
VAVAVS
0.6 M};/ Z
‘".ér’ffjf:j;"" N
52z of ©f 68 r/."a

Fi%; 16. Field of Functidn
M3(¢, r,?) with &= 0.7

I F—
-~ esp
BT3P U S B
;. Ok -
: ‘%//’/ | se
. / -
O, ; ] o
2

(4] 0.2 0.4+ 0¥ oB ,P/JD

... Fig. 17. Field of Function
Lo MB(f,r,)‘)With g":"OoS
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With {-> 0 function I({, r) =30, M (<, r,ﬂ‘) is con=-

, . , N 1 . _
'vexfted to 5%%-[1(1, r) - ,-5,}‘11(_1’,_ ra, ‘M}(g’ , r,’;l} and

) 5}1 u( 1, r). Then solution (3.24) takes the following shape |

m 2r -
PRy 1 3 e ‘e Ur{l,r)
- - - - 11§?-‘ —-(T’Z)f‘ﬁz. “““““““ Tdﬁfdr +
tj f=o0 27 e . ¢p [{=0 &
o : '

o 2w , ' o
g 9’1‘ u(x,r)
——— ( ( m? --(T Az)-} --(z ATH --'--'2"-“1',‘51 Pdr,
o o S f

v (3'28‘
Analogous to {(2.56)

U(1,#) with r >0,
- Ur(l,r) = - . -
g Withc r =\Oo

Now we recall correlation (3.3,)

2 R (g
3’? r[-«-(z Az) +g---} = - -:g- [——(T Az) E; --(z &T)fﬁ--—‘/
. Assuming that | | | | |

) 'l Quallflcgtlon (3 29) means that the kinetic energy of the v
of mass —g-— accordz.ng; to altz.tude does not. increase fasfer 'i

the increase of -fé-

hE




" we obtain |

) I
[—-—(T Az) ¢ -Z-(z ,AT) +ﬁf->--]f =0, - - (3.3C
=0

91

The result of (3 30) is that derivatives g&z and 5 at
the upper border of the atmosphere equal zero; this means tha
the temperature on the surface Ie = const, is constant with
 £-30. In other words, - o | |

G A A - (3.3

We further assume that £ =5 O

af £ =0
Meeting conditibnsi‘(3.30) to (‘3‘.32) from (3.28) we obtain tr
result: '
aT - o
B T ¢

‘L4, Eouations for Vertical Velocity.

Vertical motion appears as a component of the mechanism

of atmospheric circulation. The redistribut:.on of kinetic,

, tential and 1nternal energies of air from one level to the
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.. other is reallaed th rougn vertical currents. xhprelora, in the

Stgcy of asroqnherlc nrocessea the ean1natzaﬁ 0? vc%*;c
- moticn sh ld be glven Careful attentzon. | |

At the same t¢me, vertlcdl motloms are of 1nterest as sug
becauae they are the main facuor in the nrocess of formatlonr
of clouﬁ condltions and ore01n1tauzon.ivun |

To obtain an equation for vbwtlcal WOthﬁ C in the at-

-

sphere, it is 1ndlspen51ble to eyclude cerlvatlves “l%
PN T
-and :Zi from system (2.1) and {2 3). «
A | .y .
FOr'uhzs;purpoge we dszerenrzate the equatlonAw1th f

. , i
We obtain:

Coe 2 620,02 Baaws gl u
m—— ez e -— o R S WA Bmrm s Uk
pg 20 7 (J,at 20 |77 v‘ W N
waThe §quatiqh'of statics giyés usﬁc6f?éiations
N9y R L 9T
B T Bl R - (L.2

- .--(z Az) 4 -?-j 1 i 3—- %.’.(_T Ai) + .?;'..(Z‘-VAT)} +
¢ | T f%x ST T rTee

YWe take (4.2) and_(#.B) as afbasis for (4s1). Then weioﬁtéiﬁ '

oy
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oy 1 oT 1 [ 3T

------ IR LI --( AT 4 =)
CEETC A P T p2) naD 4 63
a I €

‘Ue exﬁlude the derivativ%ﬁZf (h h) through the equation of
heat flux (2 2) and obtain' ’ |

K %Ez 'f -"2& E‘(&z b’)J §‘f3(.x,'y,C), (o

“*f3(3t-;y,‘§‘) = - Lz {-—- A ('r )+ --- -} --(T Az) + -L-(z , AT,
Cp

+ &"‘""} . ' (lko

We assume that the changes of value T(;G y’) in regard
the vertical and horizontal are small compared ‘to the rela-
tive changes of vertical velocity. Thus equation (4.5) can
formulated in the following manner

'C 2""“5 + mzﬂﬁ‘ Cf (x,y,0)y (b
ne - parameteg introduced above.

The 1imit conditions for equation (4.7) are as follows:

(&

69



= g fo ~---— small quant:.ty. N )

We now come to the cylindrical coordinate syqtem r &}’ f y ‘f‘

el already used above., i

.’En th:.s ccordmate system equa’c.ion (l}, ‘7) assumes the fol— |

| | lowing shape' '

B L S A 96' | .> |
R £ A e A St ff (r ). (a 9
SR § 3§'§ r 9 ol % r2 }tf e 3 ? f | - "

In egrat,ing this ecuation w:«.th 7" from zero to 2 # e g

c'otain the followirrg equat:.on for function ?‘: 2;—,‘_

"6
.y

f Tagee 3"" o 1’
am |

‘ ‘: ”ﬂfi;;f }i{A P -;;&
‘ L ,o"--‘ e

el

" The solution of ‘equation (4.10) is ‘obtained through

L EeO s K Slp.C)drppap. o Ga1

- ~ The “3.11mit_'c0r'xdit_ions of equation ‘(_Af"f."-l()') are as fcildws: | G b



As we have done above, we assume that function FB(r,:)

~and 7T o(r) can be presented as intervals according to Fourie-f

Bessel . .
: @ o E . e
: A;«,_"‘If',s(r,() = g 'Jo(rf’)f dp- g ,' FB(r',I) Jolprtirtdrt,
‘ Y- T o ' |

| ‘(4.14) |

T _ ® | @ 4 |
o Ele) = ‘S»;-J (rf)!oap_( .?o(r') Jo’(f:r')r'dr' .

. We take (4, 13) and (h.lh) as _basis for (h 10) and (h 12)
Analogous to the above we obtain the following dz.fferential

;equat.ions and limit conditions for the new unknown function’

2 278

g pEE 0 )
s] =0,
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. (4.16)
S = 53(19), :
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. ds above

B0 | nen e s,

- S30p) =S Tolr') Jolgrtirtart,
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1., 1
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- In the selection of C) and C, we will see to it that solution

| ’”.f_(ﬂ.la)'meats limit‘cqnditicns'(#;16);5The:re$ulﬁfisjas«follﬁwé “_L£j




~ Bearing in mind that Fy(p,f) and GB(f)), can be expressed
the integral way (4.17}), we will use it‘as a basis for {(4.19
Moreover, the obtained exprezssion m taken as a base% for
{&.13). Now we change the order of integratlon and assume th
r = 0,
gL
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Fig. 18. Graph of Function 11(1‘, r)
~ for various £ .

=  ‘ Then we obtain:
""’(g) - - S 5 F3(r’ )() {M3(§, rt ;()r'dr'dnz +

00"

© | |
+ g galrt)l I(g, r') rlar’, (42
o
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“MBI.( 5 ) and I(§, r') - Functions (3.22) and (3.23) in-
troduced previously. |

Substituting I,"3(r,q) and t,(r) in (4.20) according to
{(4.11) and (4.12) through (4.6), we formulate solution (4.20)
15 the final form as follows: |

: l o 2
l‘ ‘R £ . . o A ) ( T)
'E’(g)-;;g ( g P-Ii'{‘[A(T’z.)~+(’ z) ¢ (2, :
O 0 o . '.

¢ A& + p-«--}{Mﬂf, 7)rd¢pd?d7 +

p
00" 2 , .
+ — ( ( ---- g I( f , T)rd rdr. (42
0o ©

The graphic presentation of function ¢I(f,r) with variou
£ (Fig. 18) shows that the second term in the right part (4.2
quickly vanishes at the respective altitude.

Considering that ¢, = g fo ---9 usually does not exceec’ .
10 millibar (12 hours), we may disregard the second component )
in (4.21). | o L

Fig. 19 and 20 show the fields of functions ¢ M3(§,r,7)
for different § .
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The properties of function M;({, r,q) show that in the
formation.of vertical motions in the intermediary tropospher-
the dynamic processes in the intermediary and upper parts of
the troposphere play the decisive part. The vertical motions
at the level of 3-5 km are mainly determined by particulariti
of the pressure fields, temperature and heat fluk at the 3-8
levels.

| Equation (L.21) shows that in the source region of the
heat flux the terms of type A’>'§ (T,z) + Egz} will always
provide the anabétic'motidns; But in the heag discharge re-
gions they will provide the catabatic motions. Consequently.
part of the heat influx entering any important region of th¢
atmosphere is transferred, together with the vertical curre:
to higher layers. _

On the other.hand, the h;at dischérge is partly compen=-
sated by the transfer of heat through vertical currents fror
higher layers.

This points out the important role played by vertical mc
tions of the atmosphere in the redistribution of thermic enec

Factor g&i%% in the solution for 72~ which appears ir
the initial equations-of the parameter change of the corioll
according to latitﬁde, is importanﬁ only in the presence of.
great thermic disturbances of the atmosphere. In the easter:
part of the thermal crest this factor becomes an aﬁabatic ¢
ponent of vertical velocity, in the western part of the cre

however, a catabatic component.
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